skip to main content


Search for: All records

Creators/Authors contains: "Giribet, Gonzalo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes. One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny, have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset, sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient, originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for Paleotropical taxa. 
    more » « less
  3. Vieira, Cristina (Ed.)
    Abstract Genome assemblies are growing at an exponential rate and have proved indispensable for studying evolution but the effort has been biased toward vertebrates and arthropods with a particular focus on insects. Onychophora or velvet worms are an ancient group of cryptic, soil dwelling worms noted for their unique mode of prey capture, biogeographic patterns, and diversity of reproductive strategies. They constitute a poorly understood phylum of exclusively terrestrial animals that is sister group to arthropods. Due to this phylogenetic position, they are crucial in understanding the origin of the largest phylum of animals. Despite their significance, there is a paucity of genomic resources for the phylum with only one highly fragmented and incomplete genome publicly available. Initial attempts at sequencing an onychophoran genome proved difficult due to its large genome size and high repeat content. However, leveraging recent advances in long-read sequencing technology, we present here the first annotated draft genome for the phylum. With a total size of 5.6Gb, the gigantism of the Epiperipatus broadwayi genome arises from having high repeat content, intron size inflation, and extensive gene family expansion. Additionally, we report a previously unknown diversity of onychophoran hemocyanins that suggests the diversification of copper-mediated oxygen carriers occurred independently in Onychophora after its split from Arthropoda, parallel to the independent diversification of hemocyanins in each of the main arthropod lineages. 
    more » « less
  4. Sharma, Prashant (Ed.)

    Pettalidae is a family of mite harvestmen that inhabits the former circum-Antarctic Gondwanan terranes, including southern South America, South Africa, Madagascar, Sri Lanka, Australia and New Zealand. Australia is home to two pettalid genera, Austropurcellia, in northern New South Wales and Queensland, and Karripurcellia, in Western Australia, until now showing a large distributional gap between these two parts of the Australian continent. Here we report specimens of a new pettalid from South Australia, Archaeopurcellia eureka, gen. et sp. nov., closing this distributional gap of Australian pettalids. Phylogenetic analyses using traditional Sanger markers as well as ultra-conserved elements (UCEs) reveal that the new genus is related to the Chilean Chileogovea, instead of any of the other East Gondwanan genera. This relationship of an Australian species to a South American clade can be explained by the Antarctic land bridge between these two terranes, a connection that was maintained with Australia until 45 Ma. The UCE dataset also shows the promise of using museum specimens to resolve relationships within Pettalidae and Cyphophthalmi. ZooBank: urn:lsid:zoobank.org:pub:9B57A054-30D8-4412-99A2-6191CBD3BD7E

     
    more » « less
  5. Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics—genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations—has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences. 
    more » « less
  6. New Caledonia has an endemic opiliofauna with two named species of Triaenonychidae, 17 Troglosironidae and eight Zalmoxidae. The recent finding of Neopilionidae on Grande Terre was thus surprising, and required the formal description of a new genus, which we undertake here. Martensopsalis gen. nov. is characterized by a small unsclerotized body with a unique palp with a pointed basal apophysis on the ventral side of the femur and with a distal apophysis on the prolateral side of the patella. The distinct external morphology, simple penis and unique phylogenetic position justify the erection of the new genus with Martensopsalis dogny spec. nov. as its type species. In addition to the type locality we report several other localities of putative congeneric, yet undescribed species. 
    more » « less
  7. The Opiliones family Neopilionidae is restricted to the terranes of the former temperate Gondwana: South America, Africa, Australia, New Caledonia and New Zealand. Despite decades of morphological study of this unique fauna, it has been difficult reconciling the classic species of the group (some described over a century ago) with recent cladistic morphological work and previous molecular work. Here we attempted to investigate the pattern and timing of diversification of Neopilionidae by sampling across the distribution range of the family and sequencing three markers commonly used in Sanger-based approaches (18S rRNA, 28S rRNA and cytochrome-c oxidase subunit I). We recovered a well-supported and stable clade including Ballarra (an Australian ballarrine) and the Enantiobuninae from South America, Australia, New Caledonia and New Zealand, but excluding Vibone (a ballarrine from South Africa). We further found a division between West and East Gondwana, with the South American Thrasychirus/Thrasychiroides always being sister group to an Australian–Zealandian (i.e. Australia + New Zealand + New Caledonia) clade. Resolution of the Australian–Zealandian taxa was analysis-dependent, but some analyses found Martensopsalis, from New Caledonia, as the sister group to an Australian–New Zealand clade. Likewise, the species from New Zealand formed a clade in some analyses, but Mangatangi often came out as a separate lineage from the remaining species. However, the Australian taxa never constituted a monophyletic group, with Ballarra always segregating from the remaining Australian species, which in turn constituted 1–3 clades, depending on the analysis. Our results identify several generic inconsistencies, including the possibility of Thrasychiroides nested within Thrasychirus, Forsteropsalis being paraphyletic with respect to Pantopsalis, and multiple lineages of Megalopsalis in Australia. In addition, the New Zealand Megalopsalis need generic reassignment: Megalopsalis triascuta will require its own genus and M. turneri is here transferred to Forsteropsalis, as Forsteropsalis turneri (Marples, 1944), comb. nov. 
    more » « less
  8. null (Ed.)
    The Cyphophthalmi genus Troglosiro (the only genus of the family Troglosironidae) is endemic to New Caledonia, representing one of the oldest lineages of this emerged part of Zealandia. Its species are short-range endemics, many known from single localities. Here we examined the phylogenetic relationships of Troglosironidae using standard Sanger-sequenced markers (nuclear 18S rRNA, 28S rRNA, and mitochondrial 16S rRNA and cytochrome c oxidase subunit I) and a combination of phylogenetic methods, including parsimony under Direct Optimization and maximum likelihood with static homology. We also applied a diversity of species delimitation methods, including distance-based, topology-based and unsupervised machine learning to evaluate previous species designations. Finally, we used a combination of genetic and morphological information to describe four new species – T. dogny sp. nov., T. pin sp. nov., T. pseudojuberthiei sp. nov. and T. sharmai sp. nov. – and discuss them in the broader context of the phylogeny and biogeographic history of the family. A key to the species of Troglosiro is also provided.urn:lsid:zoobank.org:pub:93541314-8309-468C-BB77-B34C3A81137E 
    more » « less
  9. Barrow, Lisa (Ed.)
    Abstract Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and subfamilies) and the timing of their origin are not sufficiently understood to explain how this tropical clade has been able to colonize the temperate zone. Here, we used transcriptomics and divergence time dating to investigate the phylogeny of Gonyleptoidea. Our results support the monophyly of Gonyleptoidea and all of its families with more than one species represented. Resolution within Gonyleptidae s.s. is achieved for many clades, but some subfamilies are not monophyletic (Gonyleptinae, Mitobatinae, and Pachylinae), requiring taxonomic revision. Our data show evidence for one colonization of today’s temperate zone early in the history of Gonyleptidae, during the Paleogene, at a time when the Neotropical area extended poleward into regions now considered temperate. This provides a possible mechanism for the colonization of the extratropics by a tropical group following the Paleocene–Eocene Thermal Maximum, explaining how latitudinal diversity gradients can be established. Taxonomic acts: Ampycidae Kury 2003 is newly ranked as family; Neosadocus Mello-Leitão is transferred to Progonyleptoidellinae (new subfamilial assignment). [Arachnids; biogeography; phylogenomics; transcriptomics.] 
    more » « less
  10. null (Ed.)
    The Opiliones superfamily Triaenonychoidea currently includes two families, the monogeneric New Zealand–endemic Synthetonychiidae Forster, 1954 and Triaenonychidae Sørensen, 1886, a diverse family distributed mostly throughout the temperate Gondwanan terranes, with ~110 genera and ~500 species and subspecies currently described. Traditionally, Triaenonychidae has been divided into subfamilies diagnosed by very few morphological characters largely derived from the troublesome ‘Roewerian system’ of morphology, and classifications based on this system led to many complications. Recent research within Triaenonychoidea using morphology and traditional multilocus data has shown multiple deeply divergent lineages, non-monophyly of Triaenonychidae, and non-monophyly of subfamilies, necessitating a revision based on phylogenomic data. We used sequence capture of ultraconserved elements across 164 samples to create a 50% taxon occupancy matrix with 704 loci. Using phylogenomic and morphological examinations, we explored family-level relationships within Triaenonychoidea, including describing two new families: (1) Lomanellidae Mendes & Derkarabetian, fam. nov., consisting of Lomanella Pocock, 1903, and a newly described genus Abaddon Derkarabetian & Baker, gen. nov. with one species, A. despoliator Derkarabetian, sp. nov.; and (2) the elevation to family of Buemarinoidae Karaman, 2019, consisting of Buemarinoa Roewer, 1956, Fumontana Shear, 1977, Flavonuncia Lawrence, 1959, and a newly described genus Turonychus Derkarabetian, Prieto & Giribet, gen. nov., with one species, T. fadriquei Derkarabetian, Prieto & Giribet, sp. nov. With our dataset we also explored phylogenomic relationships within Triaenonychidae with an extensive taxon set including samples representing ~80% of the genus-level diversity. Based on our results we (1) discuss systematics of this family including the historical use of subfamilies, (2) reassess morphology in the context of our phylogeny, (3) hypothesise placement for all unsampled genera, (4) highlight lineages most in need of taxonomic revision, and (5) provide an updated species-level checklist. Aside from describing new taxa, our study provides the phylogenomic context necessary for future evolutionary and systematic research across this diverse lineage.ZooBank Registration: urn:lsid:zoobank.org:pub:81683834-98AB-43AA-B25A-C28C6A404F41 
    more » « less